Toplu Taşımada En Az Aktarma Kriterine Göre Seyahat Planlama İçin Matematiksel Model

Efendi NASİBOĞLU, Murat Erşen BERBERLER

Özet


Her geçen gün trafiğe çıkan araç sayısının artması ve mevcut ulaşım alt yapısının ihtiyaca cevap verememesi gibi nedenlerden dolayı toplu taşıma ile seyahat planlama gelişmiş şehirlerin gündem maddeleri arasında ilk sıralarda yer almaktadır. Özellikle alt yapıları çok eskilere dayanan ve mevcut yerleşik düzenleri nedeniyle alt yapılarında yenilemeye gidemeyen şehirler, ulaşım planlarında radikal değişiklikler yapmak zorunda kalmaktadır. Bu şehirlerin mevcut ulaşım planlarında şehrin önemli noktaları arasında bir çok paralel otobüs hattı varken trafik sıkışıklığı nedeniyle, otobüsler yeni planlarda metro, vapur v.b. ulaşım enstrümanlarına aktarma aracı olarak kullanılmaktadır. Dolayısıyla en az aktarma kriteri, yöneticiler için toplu taşıma ulaşımını planlama aşamasında, yolcular için de ulaşım sistemini kullanma aşamasında çok önemli hale gelmiştir. Bu çalışmada en az aktarma kriterine göre seyahat planlama için yeni bir matematiksel model önerilmiştir.

Abstract

Travel planning with public transportation is the first priority in the agenda of developed and developing countries because the number of vehicles in traffic increases day by day and the existing public transportation infrastructure cannot satisfy the current needs. Especially, the cities of which the infrastructures are very old and cannot undergo reconstruction due to their current permanent settlements must make radical changes in their public transportation plans. While there were many parallel bus lines between the important locations of these cities in their former public transportation plans, in their new public transportation plans, the buses are used as transfer vehicles to other public transportation instruments such as metros or ferries, etc. since the long and large vehicles cause traffic congestions. Therefore, the least public transfer criterion has become very important for managers in the process of planning public transportation and for passengers using this public transportation system. In this study, because of its critical importance mentioned above, a new mathematical model for travel planning according to the least public transfer criteria will be proposed the model will be tested on experiment examples. These examples will be taken into account as they include the cases encountered in real-life problems.



Referanslar


Bertolini, L., le Clercq, F. ve Straatemeier, T., 2008, Urban transportation planning in transition, Transport Policy, Vol. 15.

Muller, P.O., 2004, Transportation and urban form; Stages in the spatial evolution of the American metropolis, The Geography of Urban Transportation, The Guilford Press, New York, 86–112.

Crane, R., Boarnet, M., 2000, Travel by Design: The Influence of Urban Form on Travel, Oxford University Press, New York.

Vuchic, V.R., 1999, Transportation for Livable Cities, New Brunswick: Center for Urban Policy Research, Rutgers University.

Meyer, M.D., Miller, E.J., 2001, Urban Transportation Planning: A Decision-Oriented Approach, McGraw-Hill, New York.

Hanson, S., Giuliano, G., 2004, Geography of Urban Transportation, The Guilford Press, New York.

Yi-Min, D.,Zhuo, D., Chang-Ping, Y., 2013, The network model of urban subway networks with community structure, Acta Physica Sinica, Vol. 62, Issue: 9, May

Ying, Z., Jun, L., Hui, Z., 2013, Transit transfer optimization with capacity constraint consideration: Evidence from Chengdu bus, 2013 International Conference on Management Science & Engineering (20th), Harbin, P.R.China, July 17-19.

Zhao, F., Ubaka, I., 2004, Transit network optimization minimizing transfers and optimizing route directness, Journal of Public Transportation, Vol. 7, Issue: 1, 63-82.

Knoppers, P., Muller, T., 1995, Optimized transfer opportunities in public transport, Transportation Science, Vol. 29, Issue: 1, 101-105.

Wang, B., Yang, X.H., 2011, A transfer Method of Public Transport Network Based on Adjacency Matrix Multiplication Searching Algorithm, WSEAS Transactions on Circuits and Systems, Vol. 10, Issue: 3.

Li Z.W., Zhu M., 2010, Breadth-first Search Based Bus Transport Transfer Algorithm, Proceedings of the 9th WSEAS Int. Conference Applied Computer and Applied Computational Science.

Li Y., Meng L., 2010, Least Transfer Cost Model for Optimizing Public Transport Travel Routes, 2nd International Conference on Signal Processing Systems.

Wu, Q., Hartley, J., 2004, Using K-shortest Paths Algorithms to Accommodate User Preferences in the Optimization of Public Transport Travel, Seventh National Conference of the United Kingdom Simulation Society, Oxford – UK.

Antsfeld, L., Walsh, T., 2012, Finding Multi-criteria Optimal Paths in Multi-modal Public Transportation Networks using Transit Algorithm, Proceedings of ITS World Congress, Viyana-Avusturya.

Pallottino S., Scutella M. G., 1997, Shortest path algorithms in transportation models: classical and innovative aspects, Technical Report tr-97-06, Universita di Pisa.

Modesti P., Scimachen A., 1998, A utility measure for finding multi objective shortest paths in urban multimodal transportation networks, European Journal of Operational Research, Vol. 111, 495-508.

Han D.H., Yeong-Dae K., Lee J.Y., 2014, Multiple-criterion shortest path algorithms for global path planning of unmanned combat vehicles, Computers & Industrial Engineering, Vol. 71, 57–69.

Xuewu, S., Limin, Z., Pingping, G., 2010, A Bus Transfer Optimization Model Based on Genetic Algorithm, Proceedings of the 7th International Conference on Innovation & Management, P.R.China.

Xiaoyu, L.L.N., 2005, Researches on Railway Passenger Transit Transfer Model of Genetic Algorithm, Railway Transport and Economy, Vol.2, pp.86-89.


Tam Metin: PDF

Refback'ler

  • Şu halde refbacks yoktur.